About 50 results
Open links in new tab
  1. 深度学习中LOSS的设计思路是什么? - 知乎

    8本电子书免费送给大家,见文末。 常见的 Loss 有很多,比如平方差损失,交叉熵损失等等,而如果想有更好的效果,常常需要进行loss function的设计和改造,而这个过程也是机器学习中的精髓,好的 …

  2. 深度学习的loss一般收敛到多少? - 知乎

    计算机视觉的图像L2损失函数,一般收敛到多少时,效果就不错了呢?

  3. 深度学习的loss一般收敛到多少? - 知乎

    看题主的意思,应该是想问,如果用训练过程当中的loss值作为衡量深度学习模型性能的指标的话,当这个指标下降到多少时才能说明模型达到了一个较好的性能,也就是将loss作为一个evaluation metrics …

  4. 如何分析kaiming新提出的dispersive loss,对扩散模型和aigc会带来什 …

    Dispersive Loss:为生成模型引入表示学习 何恺明团队的这篇文章提出了一种名为「Dispersive Loss」的 即插即用 正则化方法,用来弥合 扩散模型 与 表示学习 之间长期存在的鸿沟。 当前扩散模型主要 …

  5. 有哪些「魔改」loss函数,曾经拯救了你的深度学习模型? - 知乎

    类似的Loss函数还有IoU Loss。 如果说DiceLoss是一种 区域面积匹配度 去监督网络学习目标的话,那么我们也可以使用 边界匹配度去监督网络的Boundary Loss。 我们只对边界上的像素进行评估,和GT …

  6. 究竟什么是损失函数 loss function? - 知乎

    Focal Loss focal loss出于论文Focal Loss for Dense Object Detection,主要是为了解决one-stage目标检测算法中正负样本比例严重失衡的问题,降低了大量简单负样本在训练中所占的比重,可理解为是一 …

  7. 大模型优化利器:RLHF之PPO、DPO

    Sep 26, 2025 · 最终,我们可以得出 DPO 的 loss 如下所示: 这就是 DPO 的 loss。 DPO 通过以上的公式转换把 RLHF 巧妙地转化为了 SFT,在训练的时候不再需要同时跑 4 个模型(Actor Model …

  8. 损失函数|交叉熵损失函数 - 知乎

    1.3 Cross Entropy Loss Function(交叉熵损失函数) 1.3.1 表达式 (1) 二分类 在二分的情况下,模型最后需要预测的结果只有两种情况,对于每个类别我们的预测得到的概率为 和 ,此时表达式为( 的底 …

  9. 深度学习中loss和accuracy的关系? - 知乎

    深度学习中loss和accuracy的关系? 以分类问题为例,最初的理解是相对于准确率(accuracy),损失函数(loss function)的数值能更精确的反应出预测值和真值的差距,但二者反… 显示全部 关注者 …

  10. 深度学习的多个loss如何平衡? - 知乎

    多个loss引入 pareto优化理论,基本都可以涨点的。 例子: Multi-Task Learning as Multi-Objective Optimization 可以写一个通用的class用来优化一个多loss的损失函数,套进任何方法里都基本会涨点 …